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Abstract 

The concept of a 'rotational form factor' analysis 
of molecular crystalline structures is generalized by 
allowing correlations between the orientation of a 
molecule and its centre-of-mass position. This coupling 
results in correction terms to the well known rotational 
form factor. The method is illustrated with the example 
of (i) tetrahedral molecules and (ii) dumbells at a site of 
cubic symmetry (m3m) and the r61e of the site 
symmetry as well as the magnitude of the mean-squared 
amplitude (u 2) of the centre-of-mass motion are 
investigated. 

Q(hkl) is the scattering vector expressed in terms of the 
cell parameters and the Miller indices hkl; R0j denotes 
the equilibrium centre-of-mass position of the j th 
molecule in the unit cell; exp[-Wj(Q)]  is the Debye- 
Waller factor for the translational motion; F]°t(Q) is 
the rotational form factor of a molecule. For simplicity, 
we take only one molecule in the unit cell and o n l y  
molecules with one shell of atoms. Therefore the index 
j will be dropped in the following. The rotational form 
factor is expressed in terms of symmetry-adapted 
surface harmonics, 

Fr°t(Q) = f Prot(r) exp (.OQ). dr 

I. Introduction 

Various authors have outlined methods suitable for the 
structure analysis of molecular crystals (Kurki-Suonio, 
1967; Seymour & Pryor, 1973; Press & Hfiller, 1973, 
1974; Kurki-Suonio, 1977), particularly for orienta- 
tionally disordered molecular crystals investigated by 
neutron diffraction. The procedure used is essentially 
the following: the density distribution (weighted with 
the scattering length of the atoms) at a molecular site 
is expressed in terms of a convolution between a prob- 
ability distribution function for the position of the 
molecular centre of mass, pr(R), and an orientational 
probability distribution function (PDF), Prot ( r  - -  R). 

p(r) = f Pr(R) Prot (r -- R) dR. (1.1) 

R denotes the instantaneous centre-of-mass position of 
a molecule and r' = r -- R connects an atom within a 
molecule with its centre of mass. In (1.1), it is implicitly 
assumed (i) that the molecules are rigid and (ii) that 
correlations between the rotational and translational 
motion of a molecule can be neglected. The structure 
factor then can be written 

F ( Q ) =  Y exp(iQRoj)exp[-Wj(Q)lF~°t(Q). (1.2) 
J 

• l t • 

=4z~ Y t Jl,(QP)Cl, m, Kl,m,(ff2Q). 
I 'm'  

(1.3) 

The Jt,(QP) are spherical Bessel functions with the 
argument Qp; p is the radius of the shell of atoms (= 
distance from the molecular centre of mass); the Cvm, 
are the expansion coefficients of the symmetry-adapted 
harmonics and "Qo denotes the polar angle of the 
scattering vector Q. Finally, the K t, m' ('O0) are surface 
harmonics which are invariant under all operations of 
the point symmetry at a molecular site (Lage & Bethe, 
1947; Bradley & Cracknell, 1972). Formulations have 
been given for various examples, particularly for cubic 
(Price, Rowe, Rush, Prince, Hinks & Susman, 1972; 
Rowe, Hinks, Price, Susman & Rush, 1973; Press, 
1973; Levy, Sanger, Taylor & Wilson, 1974; Ahtee & 
Kurki-Suonio, 1978; More, Lef6bvre & Fouret, 1977; 
Bleif, 1978; Bleif & Dachs, 1979; Dolling, Powell & 
Sears, 1979) and hexagonal site symmetry (Press & 
HfiUer, 1978). 

As is found by first expanding in a coordinate system 
fixed within the molecule and then transforming to the 
crystalline frame, both the site and the molecular 
symmetry determine which expansion coefficients Cl, m, 
may be non-zero (Press & Hfiller, 1973). High 
symmetry means that only a few functions K v m' (.f2Q) 
contribute. Furthermore, restrictions on the magnitude 
of the expansion coeffÉcient % m' have recently been dis- 
cussed (Hfiller & Press, 1979). A necessary but not 
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sufficient condition on the orientational PDF is that it is 
positive definite. An even more stringent condition 
results from the requirement that the distribution 
function over angles f(og) which mediates the trans- 
formation from the molecular frame to the crystalline 
frame also is positive definite. 

In some cases it seems doubtful whether a basic 
assumption in the above treatment is valid: it has been 
assumed that the orientational PDF is independent of 
the instantaneous position of the molecular centre of 
mass R or, differently, that there is no orientation- 
translation coupling. If we take the example of larger 
molecules like CBr 4 (More, Lef~bvre & Fouret, 1977) 
or adamantane, we indeed may suspect that steric 
hindrance introduces such a coupling. 

II. Inclusion of  correlations between orientation and 
centre-of-mass position of  a molecule 

In (1.1), the density distribution p(r) has been expressed 
in terms of a convolution between a translational PDF 
and an orientational PDF. Correlations which so far 
have been ignored can be included by the more general 
expression given by Press & Htiller (1973), 

p( r )= fPr (R)Pro t ( r ' iR )dR .  (2.1) 

The R dependence of the orientational PDF now 
enters explicitly in the conditional probability Prot(r' IR). 
It is the conditional probability of finding a scatterer at 
r' = r - R if the molecular centre of mass is at R. For 
small translational displacements R' = R - R 0, a 
Taylor expansion ofProt(r' IR ) is performed: 

Prot(r, IR ) = n(0)¢,., ,dl)t,. ,~R, ,42) t ' r o t ~ "  ) + t- 'rot~," J ' "  + ½ R' ( r ' )R '  /"rot  • • ", 

(2.2) 

with 

pCO) r,, ~ (2.2a) 
r o t  ~," , = P r o t  ( r '  I R) [ R = Re, 

0 
[p~o~{(r')],~ - Prot(r' IR)I R=R0, (2.2b) 

0 0 
[,,¢2)(r')1,~- - - P r o t ( r ' l R ) l R : ~ .  (2.2c) 

/"rot  6 9 R a  0 R j 3  

Prot(r' I R) has the full site symmetry, hence all terms in 
expansion (2.2) have this symmetry too. 

pt0) ¢,,~ represents the well known orientational PDF rot k -  ] 
introduced in (1.1) which does not depend on the 
instantaneous centre-of-mass position R. It transforms 
according to the completely symmetric representation 
of a given point symmetry (e.g. A ~g in m3m). Previous 
publications only take account of this term. 

In order to obtain invariants of the type ,,(1) t,., aR, it t ~ r o t k -  1- , ,  , 
is required that n")t,."~ and R' belong to the same rep- t"rot  k -  / 
resentation. In the present case this is the vector rep- 
resentation. For cubic symmetry (m3m), R' trans- 

"-tl) (r,), forms like T~u and therefore in an expansion Olprot 

1 
p")(r ' )  = 6(r' - p) Z " "  Kvm, (.O), (2.3) 

r o t  - ~  1' m '  ~'1' m '  

only functions Kl, m, enter which transform like T~u 
(Lage & Bethe, 1947; Bradley & Cracknell, 1972). The 
vector denotes that there are always triples of such 
functions with m' = (m 1, m 2, m3). 

Similarly one may decompose R R into its ir- a 
reducible representations and combine them with 
[p~Zo{(r')],~ of the same symmetry. This will be done 

• . /3 
exphcltly for a dumbell type of molecule. So far we 
have only discussed consequences of the site symmetry. 
By a generalization of the 'formal development' given 
by Press & Hfiller (1973), we also can introduce the 
symmetry of a molecule. On the lines of the above 
treatment the probability f(og) of finding a molecule 
with the orientation 09 (o9 = Eulerian angles) is replaced 
by the conditional probability f(ogIR) and then is 
expanded into a Taylor series. The result is the same as 
in the case of no correlation between translational and 
rotational motion; expansion coefficients ,4k) L'l' m '  are zero, 
if there is no non-zero surface harmonic of order l' in 
an expansion in the molecular frame. For a tetrahedral 
molecule there are no functions K l, m' (12) with / = 1, 2, 
5 for this reason. The same result is found by cal- 
culation of Fr°t(Q) for a molecule with its origin dis- 
placed from R 0 and then summing over all molecular 
centre-of-mass positions and molecular orientations 
generated by the site symmetry. 

When Fourier transforming (1.1) to obtain the 
structure factor F(Q), use is made of the convolution 
theorem. Then the orientational PDF and the trans- 
lational PDF can be treated separately. The same pro- 
cedure can be applied to (2.1)-(2.3), if 
f exp (iQR)p r (R) dR is replaced by 

f e x p ( i Q R ) ( R , ~ R [ ~ . . . R k ) p r ( R ) d R ,  (2.4) 

for the various orders k of the expansion in (2.2). In the 
following we specialise for a Gaussian PDF pr~(R) 
with isotropic mean-squared amplitudes ( u z)  = ( u] ) 
= ( ) = 

* Lists of structure factors as well as a more general treatment of 
the Fourier transform (2.4) have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
34444 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 
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G is a normalization constant. With 

c~Q~ -- ~ f exp (iQR) P~r(R) dR = (u 2> Q,~f(Q), (2.6) 

the Fourier transformation can readily be performed. 
f (Q)  -- exp[-W(Q)]  is the Fourier transform of 
p~ (R'). The result is 

F ( Q ) =  f f p r (R ' )  Prot(r' IR') dR' exp (iQr) dr 

= exp [-- W(Q)] exp (iQR0) Z Ftt,)(Q). (2.7) 
k 

Here, Ft0)(Q) = Fr°t(Q) is given in (1.3), 

FtI)(Q) = 4n: Z --i(l'+ll (u2> ¢ll')m , QJI,(Qp) g l ,  m,(OQ), 
1' m' 

(2.8) 

and so on. Only functions Kt, m,(O0. ) which transform 
like Q contribute, which guarantees that (2.8) is 
invariant under the operations of the site symmetry. 
For a molecule which has no centre of inversion, (2.8) 
represents the lowest-order correction term to Fr°t(Q). 
For molecules with an inversion centre, Ft2)(Q) , which 
is not written down explicitly, is the first correction 
term. 

The various terms Ftk)(Q) are of order (<u2>Q) k and 
obviously the significance of terms with k _> 1 depends 
crucially on the magnitude of the mean-squared 
amplitude <U 2 >. 

Examples for the practical calculation of Ft~(Q) and 
Ft2 ) (Q) will be given in the next section. 

III. Examples 

(a) Tetrahedral molecule at cubic site (m3m) 

An expansion of the orientational PDF into 
symmetry-adapted surface harmonics within the 
molecular frame shows that there are no such functions 
of order l' = 1, 2 and 5. This somewhat reduces the 
number of functions Kt, m, (O) which have to be con- 
sidered and thus the number of parameters which enter 
a specific problem. We follow the formulation of Press 
& Hiiller (1973), 

Frot(Q) = 4~z Y i i' Jt(QP) Ct°')m' KI'm'(OQ),  (3.1) 
I' ra' 

with functions K l, m' transforming according to A ~g. In 
the lowest-order term which takes account of cor- 
relations between orientation and translation, Ft~)(Q), 
we only have to include harmonics within T~,. There is 
one set of functions of order l' = 1 and 3, two sets of 
functions of order l' = 5 and 7 and so on. We need not 
consider terms of order I' = 1 and l' = 5, because of 

the tetrahedral symmetry. Hence the leading term in 
Ftl ) (Q) is of the order l' = 3 and 

Fo)(Q) = ctXl) i3ja(Qp) (-i<u2>Q) 

× [K32(q~),K33(qy),K34(qz)] +.. . ,  
(3.2) 

with q = Q/Q and 

KaE(qx) = ~ (5q3x - 3qx). (3.2a) 

The other functions are obtained by replacing qx by qy 
and qz, respectively. Factors 47r are omitted in (3.2). 

F(1)(Q) = --< u2 > Ql3(Qp)c~l ) [qx K32(qx) 

+ qy K33(qr) + qz K34(qz)] + ... 

= (u2>QI'3(Qp)Y~3~ ~ K4~(O e) + ... (3.3) 

Several constants have been absorbed into a new 
expansion coefficient ~t~ ). We see that Ftl)(Q) indeed 
has cubic symmetry. If the expansion is carried further 
to terms of order l' = 7 one obtains 

Ft,)(Q) = <u2>Qja(Qp) eta) K4,(Oq) 

+ <ue>QJT(Qp) fS~''P, 71 ,,.i (no)  

+ 8~ 12)/~2(Oq)] + ... (3.4) 

with 

K 1 (OQ) - 
3 v / l l  9V/15 K 
V/85 K81 (O°) + 2 V/26 61 (OQ), 

(3.4a) 

16 96V/2 
: ~ g61 (OQ) gE(OQ) 5V/561Ks~(OQ)+ 55V/13 

4v/7 
11V/3 K4~(O°)" (3.4b) 

Because x = K~(O), orthogonality of the symmetry- 
adapted functions requires JxK~,~,(O)dO = 0 if (l', 
m')  4: (1,1). Therefore K0~(O ) = 1 does not appear in 
(3.4). 

By comparison with (3.1) it becomes obvious that 
differences only concern factors which depend on Q = 
I QI. As for example the functional behaviour ofj4(Qp) 
is very similar to the one of QJ3(Qp) for Qp < 12 
except around Qp ~_ 7.5, the coefficients c] °) and c[] ) 
should be highly correlated in a least-squares fit of 
structural data. This indeed is found when fitting the 
structural data of CBr4I (More, Lef+bvre & Fouret, 
1977; More et al., 1979) with inclusion of a rotation- 
translation coupling. 

Inclusion of the parameters entering in (3.4) in 
addition to the ones used by More, Lef+bvre & Fouret 
(3.1 with l' < 8) poses somewhat of a problem both 
with 14 observed reflections (More, Lefebvre & Fouret, 
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1977) and 23 observed reflections (More et al., 1979). 
The results for the latter data set are given in Table 1.* 
The refinement of the less complete data set yields very 
similar results. Successive inclusion of ~]) and ,zta~ ~'71 ' 

?~12) improves the weighted R factor from R w = 7.7% 
via R w = 5.1% to a finalR w = 3.4%. The anomalously 
large coefficient c~6 °) in phase I of CBr 4 thereby is 
reduced from -0-83  + 0.07 to -0 .57  + 0.07 with 
three additional parameters. This leads us to suppose 
that the correlations between orientation and trans- 
lation expressed in (3.4) are effectively absorbed into 
the parameters of (3.1), if only the latter equation is 
used for analysing the structural data. Inclusion of the 
leading term in F~E~,(Q ) (see next paragraph) does not 
significantly improve the fit. One also could think of 
generalizing the Debye-Waller factor beyond the 
harmonic approximation. 

Another possible explanation of the anomalously 
large value of c~6 °) has recently been given by Hfiller & 
Press (1979). 

(b) Dumbell at cubic site (m3m) 
An expansion into surface harmonics within the 

molecular frame shows that there are only harmonics 
of even order for a dumbell (due to its inversion 
symmetry). At a site with symmetry m3m, the 
rotational form factor is given by the same expression 
as for tetrahedral molecules (equation 3.1). As only 
functions with l' even may appear, there are no 
invariants which transform like T~u and, therefore, 
F.tl)(Q) -- 0. The first correction term to Fr°t(Q) is 
gwen by F~2 ) (Q). 

Now R~ Ra may be decomposed into a part which 
transforms like A~e (x 2 + y2 + z 2) and a part which 
transforms like T2g (xy, yz, zx). The first part 
combines with functions transforming like A ~g and the 
second part with functions of type T2x.'~ We only quote 
the result of a straightforward calculation. 

F~2~'(Q) = (3 < U 2 > - -  <U2> 2 Q2)[c~0])Jo(Qp) 

q'- C(2) 141 d4 (Qp) K41 (f2Q) + . . .  ] 

(3.5) 

* See previous footnote. 
t Eg does not contribute because terms like RZ~ cO2/OR~ with a :# 

fl do not appear in (2.2). 

and / 

F~'~(Q) = (u z >2 Q2 [c~z2z) J2(Qp) {[ K4,(Oo)] - 2/5 } 
\ 

f 
~(2) J4(QP) { 3[K6,(£2 o)l q- t ;42  

t 2)) 
16 [K41 ('Q0) + + 

- 7---7 3-5 . . . .  
(3.6) 

[KI, m,(OQ)] denotes harmonics Kl, m, with the nor- 
malization omitted. 

I V .  C o n c l u s i o n s  

In general, the quality of structural data will not allow 
the inclusion of correlations into the rotational form 
factor approach. In most cases the available single 
crystals are not of the best quality. Also, the number of 
independent reflections from orientationally disordered 
crystals is mostly rather low, because there are only a 
few (small) molecules in the unit cell. If correlations are 
ignored, they will be absorbed into effective expansion 
coefficients in (1.3) which may mask the connection to 
orientation-dependent potentials. On the other hand, an 
expansion of Fo)(Q) or F~z)(Q) in general needs not to 
be extended to the same order as in Fr°t(Q). The 
F~k)(Q) with k _> 1 are only corrections to this 
description which may be important if (u 2 )k is large. 
With this in mind we find a surprisingly low number of 
additional parameters required for a proper treatment 
of correlations between translation and orientation in a 
structural refinement. It may be hoped that an 
increasing number of precise diffraction experiments of 
molecular crystals with orientational disorder - which 
allow the inclusion of correlations into the analysis - 
will be available in the future. 

An extension of the present work which appears to 
be desirable concerns the connection to physically 
meaningful potentials. Such a connection has been 
given for rotational potentials V(og) (e.g. Hfiller & 
Press, 1979). A generalization to potentials V(og, R) by 
combining the approaches of Hfiller & Press and 
Michel & Naudts (1977) seems useful and possible. 

Table 1. Final parameters in a least-squares fit  of  the structural data of  CBr4I (More et al., 1979) with 23 
reflections included 

The meaning of the parameters is given in the text. 

Model Scale factor (u2> (A2) PcBr (A) c~ °) c~ °~ el °~ -3,x"~ %'"~ ~72'~" Rw (%) 

(a) 17.9 (2.4) 0.170 (20) 1.937 (23) 0.06 (2) -0 .83  (7) 
(b) 19.0 (1.7) 0.177 (12) 1.924 (14) - 0 . 1 2  (4) -0 .75  (5) 
(c) 20.6 (1-3) 0.192 (10) 1.926 (12) -0 .37  (9) - 0 .57  (8) 

0.14 (14) - -  - -  - -  7.7 
0.33 (11) 0.04 (1) - -  - -  5.1 
0.85(17) 0.10(2) 0.05(1) - 0 . 1 3 ( 4 )  3.4 
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Abstract 

Coincidence-site lattice interfaces (CSLI) are fre- 
quently observed in crystals where a rigid framework 
remains invariant on both sides of the interface. They 
also seem to minimize the interface energy, for 
example, in metals where, empirically, the greater the 
density of the coincidence-site lattice the more stable 
the grain boundary becomes. Group-theory con- 
siderations allow the determination of all the possible 
interface operations which leave a given sublattice 
invariant. A classification of these CSLI with respect to 
the number of equivalent sublattices they leave in- 
variant is a guide for the prediction of the most stable 
type of interfaces with respect to the sublattice 
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considered. Examples from different types of crystals 
illustrate the method, which also applies for translation 
boundaries, twins and grain boundaries. 

Introduction 

It has often been verified that, in homogeneous crystals 
which present coherent boundaries, a fraction of the 
structure - which may be an atomic lattice or a partial 
set of atoms distributed on a lattice - remains undis- 
turbed when crossing the boundary. This idea was first 
proposed by Mallard and Friedel (see, for instance, 
Friedel, 1926) for explaining the merohedral (or 
penetration) twins and the twins formed by reticular 
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